

White paper

How to choose your process orchestration

technology ?

Gaël Blondelle, Adrien Louis, Marc Dutoo

Version 1.0 – December 2009

Get more information :

www.petalslink.com

Tél : +33 (0)5 62 73 43 80

Mail : contact@petalslink.com

http://www.petalslink.com/

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.2

Preamble

Why this white paper ?

This whitepaper is written for architects, project managers, and SOA

developers, willing to use SOA orchestration for creating processes. It explains

differences between existing orchestration technologies, and summarizes the main

criterions for choosing the most appropriate technologies.

The second part focuses on technical details and implementations of

orchestration, and routing technologies and patterns.

Authors

Gaël Blondelle is CTO of Petals Link, Vice-president of OW2 Open source

consortium, Co-founder of Toulouse Java User Group, and public speaker about

open source, SOA, and Java.

Adrien Louis is the initial developer of the Petals ESB project (former

PEtALS), then chief product architect. He has been appreciated as a great trainer

for Petals ESB, and he is the author of several articles and whitepapers about SOA

and architecture.

Marc Dutoo is Open Source solution architect at Open Wide, a leading

French Open Source portal integrator. His interests include SOA, BPM and

content management. Marc also co-leads the Eclipse Java Workflow Tooling

project, and he is one of the first contributors in the Petals ESB project.

Petals Link

Petals Link (a brand of EBM Websourcing) is an open source SOA company,

focusing on SOA integration solutions. Petals ESB, their flagship open source

ESB, is a basis for large-scale decentralized architectures. It comes with Business

activity monitoring (BAM) and SOA governance to improve SOA possibilities.

Some Petal Link references

French Social Security Central Agency (ACOSS), French state modernization

agency (DGME), Orange, Alcatel-Lucent, Akerys, Academy of Toulouse,

Gironde General Council, Limousin Regional Council, City of Lyon, Cegedim

Activ, Almerys/Orange Business Services, Thales, EADS, French Defense

Infrastructures Department (SID), French Air Force, French General Directorate

of Armament (DGA).

http://www.petalslink.com/
http://petals.ow2.org/
http://www.openwide.fr/
http://www.petalslink.com/
http://petals.ow2.org/
http://petals.ow2.org/
http://petals.ow2.org/
http://www.petalslink.com/products/petals-view
http://www.petalslink.com/products/petals-view
http://www.petalslink.com/products/petals-master

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.3

Index

How to choose the most adequate orchestration technology?. 4

Existing technologies .. 4

BPEL ... 4

SCA ... 5

Rules Engine ... 5

EIP .. 6

Ad-Hoc JBI component in Java .. 6

Which orchestration technology fits you ? ... 7

Choosing between Routing and Orchestration in an ESB 8

From Enterprise Service Bus to the routing problem ... 8

Routing versus orchestration: neither a "one size fits all" nor a "black and white"

world ... 9

The bus-level, specific development approach: interceptors 11

The component ("building block") oriented approach: the EIP toolset 12

The pipeline .. 12

Content based routing ... 13

Dispatcher ... 14

The DSL-based approach : the light orchestrator ... 15

Where patterns end, the light orchestrator starts ... 15

EIOrchestration use case : complex dynamic routing ... 15

A complete EIOrchestration sample for PEtALS .. 16

Bridging up with Business Process Management concepts 17

And what about full-fledged, business-level orchestration? ... 17

Human intervention in business processes: workflows ... 17

Conclusion .. 19

Bibliography .. 20

Petals Link ... 21

Websites and projects.. 21

Contacts .. 21

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.4

How to choose the most adequate orchestration

technology?

SOA is a multi-facet approach, whose main pillars are Service infrastructure,

Service governance and Service Orchestration. Petals leverages the JBI

specification to support the Service Infrastructure approach.

But as soon as you have a Service Oriented Infrastructure layer, you may

want to orchestrate these services in order to add value to your overall information

system. This first part focuses on the different orchestration means available with

Petals. The second part makes a deeper comparison between two which can often

offer similar features : service orchestration and routing

Existing technologies

BPEL

Most people closely associate SOA with BPEL due to the fact that WS-BPEL

- the real name of the OASIS specification accepted in April 2007 - is designed to

orchestrate Web Services.

The fact is that BPEL is the standard adopted by the SOA market and

supported by the major software providers to orchestrate Web Services. Given the

similarities between Web Services and JBI semantics, BPEL is also a good

option to orchestrate JBI services.

All in all, BPEL can be used in two ways:

 Orchestrate fine-grained services to create coarse-grained services.

Such coarse-grained services are typically short-lived.

 Create full-featured long-lived processes, which orchestrate coarse-

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://gallery.mailchimp.com/dc1319730a13e6108a34b4da8/images/capture_bpel_petals_studio_1_.png

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.5

grained services or sub-processes. This use case focuses on error-

handling and “compensation” features provided by BPEL.

“Compensation” is the capability offered by BPEL to deal with long

term transactions in the SOA world where services are stateless, non

transactional resources. For example, if the process called a service to

book an hotel room, the compensation mechanism will call a specific

service to unbook the room if something goes wrong in the rest of the

process.

However, BPEL is not the only orchestration technology. Other technologies exist

and deserve our consideration.

SCA

SCA is about putting components together to create services.

The SCA programming model leverages few concepts:

 A component exposes interfaces that represent entry points to the

components and are considered as services

 A component declares references that correspond to dependencies to

other components or services.

 A component exposes properties that can be set by the SCA

environment to change the component behavior.

SCA is largely used in an approach which privileges graphical design of

components and services with tools like Eclipse STP.

Rules Engine

Rules engines provide a totally different way to perform orchestration. We

call it declarative orchestration because you declare your rules’ condition and

action parts, and the rules engine computes the real orchestration according to the

incoming conditions.

The integration of Drools in a JBI ESB like Petals enables to start a rule on an

http://gallery.mailchimp.com/dc1319730a13e6108a34b4da8/images/capture_sca_petals_studio_1_.png

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.6

incoming JBI message, and to send back messages in the bus when some specific

rules are activated.

We think that it’s a very elegant way of implementing a declarative

orchestration, but it may be hard to support by the average developer as long as

these types of technologies are not mainstream.

EIP

Since the first version of Petals, a component implementing common

Entreprise Integration Patterns (EIP) is provided to support basic “orchestration”

patterns like:

 Pipe : to chain several services

 Split/Aggregate : to run several service processing chains in parallel

 Content Based Routing

 Service based routing (Content based routing, but the routing key is

provided by a call to another service)

 Bridge to change from a synchronous to an asynchronous exchange

pattern

 WireTap, which gives the capability to “spy” a flow while it passes

through the bus

Ad-Hoc JBI component in Java

For very specific orchestration issues, a Java ad-hoc component can be

developed.

When possible, we urge our users to consider SCA Java component instead of

an adhoc JBI component built on top of the Petals “CDK” because SCA is more

standard and should be sufficient.

Finally, writing a new component should be reserved to the case when it is

necessary to support a brand new protocol.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.7

Which orchestration technology fits you ?

In summary, we put together the different orchestration means available with

Petals:

Orchestration

Technology
Skills needed Specific orchestration

pattern supported

BPEL

Graphical tooling exists.

Need some sort of “modeling”

skills to get the right level of

granularity

Support for compensation, that

is the capability to implement

long lived transactions with non

transactional resources.

SCA (Beta)

Graphical tooling for SCA

assembly

Average Java skills needed to

develop SCA component

Orchestration is developed in

plain Java so that Exception

handling or similar is easy.

 Petals EIP SE
Learn EIP configuration

language
Some EIP patterns

Rules Engine

(Beta)

Declarative programming can

either be considered more

natural or more abstract.

Nevertheless, it needs specific

skills

-

Ad-Hoc

component in

Java

Expert Java skills

Hard coded. Can be considered

both as a bus extension mean or

as an orchestration mean.

Must be considered when other

technologies introduce

performance issues.

Each orchestration has its pro and cons. We consider that they must be

evaluated according to the specific integration context (integration patterns to

support, standards, skills needed …) before a choice can be made.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.8

Choosing between Routing and Orchestration in

an ESB

Enterprise Service Buses are nowadays indeed useful solutions that combine

an array of tools, and allow solving practical problems in the field of application

and service integration. However, they present the same mild inconvenience that a

toolbox does to its user who knows that the solution to his problem has to be in

the box, but for the sake of him can't figure out which one it is!

The goal of this article is to help ESB users choose the right answer according

to their needs, when confronted with the most complex and diverse of ESB

concepts: routing and orchestration. Instead of abstract theorizing we will ground

our efforts and reasoning in simple, real-world examples with the JBI compliant

ESB
1
 : OW2 Petals ESB, in an attempt to fill the void between low-level routing

and global, business service orchestration. In other words: we will try to uncover

how the different layers of routing and orchestration build up.

From Enterprise Service Bus to the routing problem

ESBs have a lot of fields of application, including implementing information

system-wide Service Oriented Architectures (SOAs). But at the lowest level they

all aim to ease application and service integration - that is, letting one application

or service call another. This very simple and common endeavour has various

additional levels of complexity:

 "routing", when there is not one but many source services where calls

originate from or target services to choose between ;

 "protocol bridges", when services are exposed on another protocol,

belong to other servers or even other information systems ;

 "transformations", when service messages do not have the same data

format – which is rule rather than exception.

Those three: routing, protocol, transformation have a range of close siblings,

but may nonetheless be considered the main ESB concepts. In this article we will

focus on the first one and how it relates to a close sibling of his: orchestration. As

a short introduction, let us say that routing is fundamentally low-level, near or in

the ESB core, and relies on technical configuration (like service deployment

descriptors) to provide technical decisions on where a message has to be sent.

Orchestration can be seen as combining service calls to create higher-level, more

useful composite services, but also often has a definitive "business-level" ring,

1
 Petals ESB, the OW2 ESB. Petals ESB provide a leading open source ESB to support

SOA. It is a lightweight, highly distributed and scalable platform for both A2A and B2B

integration. Thanks to its specific distributed architecture and the tools provided, such as

administration, BAM, Eclipse IDE and Governance, Petals ESB offers a very competitive

integration solution with support of a large number of protocols, formats and integration features.

http://petals.objectweb.org/

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.9

and in this case is shorthand for implementing business-level processes combining

business-specific services across applications and information systems.

Routing versus orchestration: neither a "one size fits all" nor a

"black and white" world

So how are orchestration needs addressed in an ESB? It would seem logical

to use an orchestration engine provided with the middleware solution. However,

this is far too simple an answer to a complex question. Let us consider the

following example.

Displaying a list of items

The "ItemManager" application is designed to manage items through

operations like creation, update, deletion. This application is connected to an

"ItemManagementListener" service, that publishes notifications when an item is

updated.

Another application, the "HammerMonitor" application, is a monitoring tool

that displays information on item updates that are specifically about hammers.

This application exposes a "HammerMonitor" service with a "display" operation

that receives these notifications.

Both services are exposed on an ESB. What we want is to let the

HammerMonitor display hammers that are known to the ItemManagement

application.

In order to connect the ItemManagementService to the

HammerMonitorService, we need to configure the ESB connectors (aka "binding

components"). One connector is linked to the ItemManager application, the other

one is linked to the HammerMonitor application.

Moreover the connector linked to the HammerMonitor application is

configured to expose, inside the ESB, an endpoint whose name can be

"hammerMonitorService". Thus, a simple way to achieve our goal is to configure

the connector linked to the ItemManager application so that it calls, inside the

ESB, the endpoint "hammerMonitorService" whenever it receives a message from

the ItemManager application.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.10

However, as often in the real world, let us say both services have different

data formats. This is not a barrier to SOA, as SOA defines a loosely coupled

architecture (i.e. it is not mandatory for a service consumer to fit to the service

provider definition).

The ItemManagement application provides to the

ItemManagementListenerService the following message:

<items>

 <item type="Hammer" name="hammer1"/>

 </item>

And the ItemMonitorService has an operation "display" using the following

format:

<hammers>

 <hammer hammerName="hammer1"/>

 </hammers>

At this point, a mere call does not work anymore to link both services. Data

provided by the ItemManagement application needs to be first transformed. This

is actually a very simple, local need of orchestration that has nothing to do with

the business level.

A first way to address this would be to use a common, well-known

orchestration solution like full blown, externally deployed, BPEL-supporting

orchestration engine
2
. This would work, but in this case this would be akin to use

a hammer (pun intended) to open a nut: either all transformed messages would

have to go through a single central, remote orchestration engine, in a manner akin

to the obsolete "hub" integration architecture, or there would have to be an

2
 like EasyBPEL, used as Petals BPEL engine component

http://easybpel.petalslink.com/

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.11

orchestration engine deployed on each node – an obviously far too heavy solution

for this simple problem.

So it appears a single, global, business-level answer to orchestration needs is

not enough: what about the "dirty" work that has to be done between the routing

and the business level, when generic routing provided by the bus is not enough

and the main concern is not yet to implement business rules or processes by

manipulating SOA-managed business services, but merely to combine technical,

"behind-the-scene" services so they "get the work done"?

The bus-level, specific development approach: interceptors

The lowest level answer to technical routing and orchestration needs lies in

enhancing the ESB's built-in features.

In the case of our previous example, a direct way to circumvent the problem

of data consistency between the application that sends the message and the

application that receives it is to add some logic in the connectors (i.e. the binding

components of the ESB).

For instance, the binding components provided by the PEtALS ESB can be

extended with "interceptors". An interceptor is a piece of Java code that is

executed in the "sender" binding component before a message is sent into the bus,

or in the "receiver" component, when a message is delivered.

In our example, this code can call an XSL transformation to adapt the

ItemManagement message format to the HammerMonitor format.

Nevertheless, this approach is very restrictive and not extensive. If the XSL

transformation is performed in the "receiver" connector (linked to the

HammerMonitor), it assumes that all messages received have the ItemMangement

XML structure. If a message comes from another application, it can have a

different structure, and in this case the XSL transformation may fail.

The interceptor could check the incoming message structure and choose one

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.12

XSL transformation or another, depending on the message, but would still remain

very coupled to the sender. This approach does not respect the loose coupling

concept of SOA. Moreover any other need besides transformation would imply

developing another set of specific features within the ESB engine, and that can't

be expected from ESB users, nor should it.

The component ("building block") oriented approach: the EIP

toolset

ESBs offer integration facilities by providing integration components. These

components can do a range of small, useful, flexible operations between a

consumer and a service provider. They typically implement several Enterprise

Integration Patterns (made well known by Gregor Hohpe
3
) and are the Swiss knife

of ESB users.

Independent of the service descriptions (WSDL and others), these EIP

Components just perform small things. The most known are:

 The "pipe" pattern: a single event triggers a sequence of processing

steps, each performing a specific function. The EIP Component

sequences the calls.

 The "content based router" pattern: the EIP Component examines the

message content and routes the message onto a different channel,

based on data contained in the message.

 The "message dispatcher" pattern: the EIP Component sends the

message to a list of service providers (multipoint)

 The "scatter gather" pattern: the EIP Component routes a request

message to a number of service providers. It then aggregates all the

responses into a single response message

The knowledge of all EIP Component operations allows the developer to

combine business applications (consumers and service providers) with several

"integration pattern bricks". The final result is a composite integration. Each brick

of the integration is a service.

Of course, in order to design this composite integration, a dedicated graphical

IDE is paramount since it brings, in addition to ease of use, a centralized view of

the configuration of all the bricks. For instance, the following samples are

designed by the PEtALS ESB integration tool.

The pipeline

The pipeline pattern is used to "pipe" an incoming message to several

services. The message is sent to the first one, and its response is sent to the second

one, whose response is itself sent to the third one, and so on.

3
 Gregor Hohpe's Enteprise Integration Patterns

http://www.enterpriseintegrationpatterns.com/

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.13

Adaptation between a consumer and a service provider
The ItemManagement use-case that we described previously can be designed

with this kind of assembly, with a transformation component and a "pipe" brick.

Management of service version evolutions
The same behavior can be used to manage service version evolution, in the

following way. A consumer always sends the same message structure to the "pipe"

brick, which is a proxy to the real service. When the service signature changes, the

"pipe" brick sends the consumer message first to an XSL transformation (to adapt

the consumer's message to the new service format), then it sends it to the new

version of the service. And nothing has changed for the consumer.

Content based routing

We've seen how to compose several services into a single one. But the

dynamic process aspect is not solved. Here again comes the routing challenge:

how to call one service among many?

How to switch a call to one service between many services? Well, the router

brick may perform some tests to switch the request to one version or to the other

one.

For instance, the ItemManagementListener can send notifications for hammer

and saw items to a "content based routing" Component. This component tests the

name of the item in the message, and sends it to the correct monitoring services

(HammerMonitorService or SawMonitorService). As each service defines a

different format, two different transformations have to be performed before

sending the message to the correct service. So we compose the "routing" brick

with "pipe" and "transformation" bricks.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.14

Dispatcher

Another integration need could be to send a request to several services (multi

point communication). For example, when an item order is sent from a front

application to the ordering system, an email can also be sent to the customer for

confirmation. For example, the message is sent to an ordering service and to an

SMTP service.

We can imagine that the ItemManangementListener service, which sends

notifications from the ItemManagement application, has to publish the

notifications to the HammerMonitor, to the SawMonitor and to a global

monitoring tool (which receives all notifications).

A "dispatcher" integration brick can be added to the previous composite

integration to send the message to the "routing" brick and to the global monitoring

service.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.15

The DSL-based approach : the light orchestrator

Where patterns end, the light orchestrator starts

Enterprise Integration Patterns are great concepts that help architecting

routing and orchestration solutions, and the EIP component is a great tool

allowing to actually design solutions to those problems. However, in complex

integration cases, the composite assembly approach easily leads to too scattered

and over-designed configurations. Moreover, like all patterns, EI Patterns are

limited in numbers, while the real world is full of unexpected cases that call for a

more flexible solution.

The answer is to use a light orchestration-specialized DSL (Domain Specific

Language), which is what the "light orchestrator" or "Enterprise Integration

Orchestration" component provides in PEtALS.

 When is it the right time to use such a component? It depends on a lot

of things, including development practices, but here are a few hints:

 When, as we've just said, it is hard to envision a solution using only

straight, "by the book" patterns,

 When "routing" and multiplexing patterns such as the one previously

described become commonplace (this might also hint at using a rules

engine component),

 When there are many layers of embedded "bricks" in an EIP-based

system,

 When an orchestration subsystem is best understood and maintained

when being solved in one single place rather than scattered across

several, albeit simple, EIP "bricks"

 When there is a need for rarer EI Patterns that is not supported by the

EIP component (fully dynamic routing, Return Address, Content

Enricher, Normalizer…)

EIOrchestration use case : complex dynamic routing

In order to showcase the EIOrchestration component, let's focus on our

system's extensibility.

We've already seen how to add a saw-specific monitoring feature to a system

that was initially only able to handle hammers. We could add other tool-specific

abilities the same way. However this would require reconfiguring them again each

time we want to add another tool type. So what if we want the people using our

bus to be able to add their own tool types and specific monitoring abilities?

Example: Our customer wants to be able to dynamically add a

ScrewdriverMonitorService for tools of type Screwdriver, and

DrillerMonitorService for Drillers, and so on.

We could tell them to mention within each message the name of the tool-

specific monitor service it must be sent to, and add dynamic routing capabilities to

our system.

Example: We enhance the ItemManagement application so it provides the

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.16

following message body to the ItemManagementListenerService:

<items>

 <item type="Screwdriver" name="screwdriver1"

 customMonitorService="ScrewdriverMonitorService"/>

 </item>

where customMonitorService is an additional data field that may be provided

by the customer through the ItemManagement application.

In an ESB, routing such a message can be done by dynamically choosing its

recipient service according to the "customMonitorService" attribute. For example,

this can be done in PEtALS using the EI Orchestration component, using its "get-

calls-by-xpath" feature:

<eip:get-calls-by-xpath base="/items/item"

service="@customMonitorService"

 operation="'display'"/>

Which, in our example, will call the ScrewdriverMonitorService with the

previous message.

A complete EIOrchestration sample for PEtALS

We've said at the beginning that the PEtALS EIOrchestration component

allows to handle process complexity well. So here is an example that gathers in a

single configuration everything we've seen in this article: piping ("eip:chain"

element) and transformations, simple content based routing ("eip:choose"

element) and finally dynamic routing ("eip:get-calls-by-xpath" element), while

still being quite readable:

<eip:eip>

 <eip:chain>

 <eip:choose>

 <eip:when test="/items/item[0]/@type = 'Hammer'">

 <eip:call service="ItemToHammerService"

operation="transform"/>

 <eip:call service="HammerMonitorService"

operation="display"/>

 </eip:when>

 <eip:when test="/items/item[0]/@type = 'Saw'">

 <eip:call service="ItemToSawService"

operation="transform"/>

 <eip:call service="SawMonitorService"

operation="display"/>

 </eip:when>

 <eip:otherwise>

 <eip:get-calls-by-xpath base="/items/item"

 service="@customMonitorService"

operation="'display'"/>

 </eip:otherwise>

 </eip:choose>

 </eip:chain>

 </eip:eip>

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.17

Bridging up with Business Process Management concepts

And what about full-fledged, business-level orchestration?

Another way of thinking up integration is the top-down approach, where

enterprise business processes are defined. In this approach, business processes

drive the definition of business services. Thus, a bridge is needed between what

services are offered by existing applications and what the business process wants

to orchestrate. Such a bridge is manifested in the set of all managed business-level

services within the enterprise information system, i.e. its SOA (Service Oriented

Architecture), which acts as a protecting layer both for lower-level, technical

services on the bus and for the actual business processes.

The standard way of executing processes in the SOA world is the use of a

BPEL engine. It can invoke several services and do some business logic on the

flow and on XML documents, while also being able to handle data mapping

issues. In this approach, business service definitions are the key of the

orchestration: no BPEL orchestration can be done without the definition (WSDL

typically) of all services, ensuring cleaner (however costlier) service composition.

An overview of the orchestration setup, when using BPEL in an ESB, is

available in the article written by Adrien LOUIS, "build an SOA application from

existing services"
4
.

Human intervention in business processes: workflows

Now what if in our tool monitoring example we'd need a supervisor's

approval before actually displaying information in monitoring applications? It

would require a manual intervention from a dedicated operator. This is another

4
 Introduction to SOA and ESB : "Build an SOA application from existing services"

(Adrien Louis)

http://www.javaworld.com/javaworld/jw-10-2006/jw-1011-jbi.html
http://www.infoq.com/resource/articles/louis-dutoo-esb-routing/en/resources/image6lg.jpg

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.18

face of Business Process Management: workflows, which are business processes

allowing the involvement of manual, human operation, either for manual business

tasks or manual supervision, through a graphical user interface that may be

provided within a business portal, or a more technical administration interface.

A key point is that workflows follow the opposite paradigm of state-based

approach rather than a flow-based one like BPEL orchestrators, making them

better adapted to long-lived processes, without being restricted from sitting on top

of orchestrated services. Hence workflow servers are usefully complemented by

"straight" orchestrators, though that means deploying two business process-

oriented servers – a constraint addressed by interesting new initiatives like jBoss

& Bull's "Process Virtual Machine" and the Eclipse Java Workflow Tooling

project
5
.

5
 Unifying orchestration and workflow : The Process Virtual Machine (Tom Baeyens and

Miguel Valdes Faura), and The Eclipse Java Workflow Tooling project

http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.eclipse.org/jwt/

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.19

Conclusion

We have seen several ways to connect business services with each other,

going from low-level ones like customized routing, to high-level ones using

business oriented approaches like workflow and orchestration. Most importantly,

we've exposed how ESB integrators have very common middle-level needs for

composing local, technical services, and how a range of "glue", "Swiss knife"-like

features allow them to simply "get the job done".

In summary:

 For a range of simple integration scenarios like the connection

between two heterogeneous applications, customizing routing through

ESB-specific features, e.g. adapting message data format by adding an

XSL transformation in the connectors linked to the application, is

actually the easiest way (the interceptor approach).

 When a strategy is needed to send the message to the right receiver

and when operations on messages have to be chained, we can use

and assemble simple, pattern-oriented integration bricks typically to

perform static routings, chained with transformations (the EIP

approach).

 In order to solve complex routing strategies, comprising dynamic

routing or complex imbrications, a light orchestration component

can be used to centralize the routing logic (the LightOrchestrator

approach).

 At a global, business level, well managed, consistently defined,

business-oriented services are worth the effort of being composed

using orchestration like WSDL-based BPEL, and made interact with

people using workflow solutions.

Different technologies exist for Orchestration or routing. Among them, EIP,

SCA, BPEL, Rules engine, or Plain old Java object (POJO). Each one is a way to

orchestrate, and choosing needs to look at your project specific needs, and

available competencies.

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.20

Bibliography

 Enteprise Integration Patterns (Gregor Hope)

 Introduction to SOA and ESB : "Build an SOA application from existing

services" (Adrien Louis)

 Unifying orchestration and workflow : The Process Virtual Machine

(Tom Baeyens and Miguel Valdes Faura), and The Eclipse Java Workflow

Tooling project

 Your ESB from scratch, back to basics ("routing, transformation,

transport, security"): (Balwinder Sodhi)

 Building composite services, from the trenches (Jesus Rodriguez):

"However, building composite services still represents a challenge for most of

the ESBs in the market. This is mostly given to the fact that most ESBs don't

provide a transparent way to express the routing logic into new services that

can be consumed by other applications. Instead, developers find themselves

trying to implement services that behind the scenes utilize the routing

capabilities built into the ESB engine."

http://www.enterpriseintegrationpatterns.com/
http://www.javaworld.com/javaworld/jw-10-2006/jw-1011-jbi.html
http://www.javaworld.com/javaworld/jw-10-2006/jw-1011-jbi.html
http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.eclipse.org/jwt/
http://www.eclipse.org/jwt/
http://www.javaworld.com/javaworld/jw-08-2005/jw-0808-esb.html
http://weblogs.asp.net/gsusx/archive/2007/12/07/composite-services-using-oracle-esb-routing-services.aspx

White paper
How to choose the most adequate orchestration technology ?

© EBM Websourcing – Petals Link – Authorized reproduction under Creative Commons « by-nc-nd »

p.21

Petals Link

Petals Link (a brand of EBM Websourcing) is an open source SOA company,

focusing on SOA integration solutions. Petals ESB, their flagship open source

ESB, is a base for large-scale decentralized architectures. It comes with Business

activity monitoring (BAM) and SOA governance to improve SOA possibilities.

Websites and projects

 http://petalslink.com – Petals Link open source software company

 http://petals.ow2.org – Petals ESB, the open source ESB for large

organizations

 http://dragon.ow2.org – Petals Master (ex Dragon), governance tools

integrated with Petals ESB.

 http://opensuit.ow2.org - Service-oriented web UI framework.

 http://easywsdl.ow2.org – WSDL 1.1 and 2.0 parser

 http://easybpel.petalslink.com – BPEL Engine

Contacts

contact@petalslink.com

+33 5 62 73 43 80

EBM Websourcing – Petals Link,

4 Rue Amélie,

31000 Toulouse, France

http://www.petalslink.com/
http://petals.ow2.org/
http://petals.ow2.org/
http://petals.ow2.org/
http://www.petalslink.com/products/petals-view
http://www.petalslink.com/products/petals-view
http://www.petalslink.com/products/petals-master
http://petalslink.com/
http://petals.ow2.org/
http://dragon.ow2.org/
http://opensuit.ow2.org/
http://easywsdl.ow2.org/
http://easybpel.petalslink.com/
mailto:contact@petalslink.com

